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A.-Gigli-Savaré: Density of Lipschitz maps and weak gradients in
metric measure spaces. (Revista Matematica Iberoamericana, 2013)

We study different notions of (modulus of) gradient in metric measure
spaces (X ,d ,m). We use the theory of gradient flows in Hilbert
spaces and ideas coming from optimal mass transportation to show
the equivalence of these notions.
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and applications to spaces with Ricci bounds from below.
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A.-Gigli-Savaré: Metric measure spaces with Riemannian curvature
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Sobolev spaces in Rn

The Sobolev spaces H1,q(Rn) = W 1,q(Rn), 1 < q <∞, can be defined
by:
(approximation) f ∈ H1,q(Rn) if f ∈ Lq(Rn) and there exist smooth fh
convergent to f in Lq(Rn) such that

lim sup
h→∞

∫
Rn
|∇fh|q dx <∞.

(integration by parts) f ∈ W 1,q(Rn) if f ∈ Lq(Rn) and there exists
∇f ∈ Lq(Rn;Rn) such that∫

Rn
f∇φdx = −

∫
Rn
φ∇f dx ∀φ ∈ C∞c (Rn).

Meyers-Serrin (1960), “H = W ”, by mollifications.
While the first definition can be adapted to metric measure spaces,
the second one seems to require requires a certain “differentiable
structure” (Riemannian manifolds, Gaussian spaces, Carnot-
Carathéodory spaces,...).
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Sobolev spaces on manifolds

For instance, on a Riemannian manifold (M,g), a coordinate-free
definition is based on the integration by parts formula (which could be
taken as definition of the Riemannian divergence)∫

M
f div X dvolM = −

∫
M

g(∇f ,X ) dvolM

for any smooth compactly supported section X of TM and any
f ∈ C1(M), so that f ∈ Lq(volM) belongs to W 1,q(M) if there exists a
section, denoted ∇f , of TM with g(∇f ,∇f ) ∈ Lq/2(volM) and∫

M
f div X dvolM = −

∫
M

g(∇f ,X ) dvolM

for any smooth compactly supported section X of TM.
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Levi’s approach
B.Levi, Sul principio di Dirichlet, Rend. Circ. Mat. Palermo, 1906.
f belongs to BL1,q(Rn) if

∫
Rn |f |q dx < ∞ and, for all i ∈ {1, . . . ,n}, it

holds:
(i) for L n−1-a.e. x ′i ∈ Rn−1 the map xi 7→ f (xi , x ′i ) is locally absolutely
continuous in R;
(ii)
∫
Rn−1

∫
R |

d
dxi

f (xi , x ′i )|q dxidx ′i <∞.
Using the derivative of one-dimensional restrictions and Fubini’s
theorem it is still possible “componentwise” to define a gradient ∇f .
Theorem. BL1,q(Rn) ⊂ W 1,q(Rn). Conversely, if f ∈ H1,q(Rn) there
exists f̃ ∈ BL1,q(Rn) L n-a.e. equal to f .
Summing up, BL is intermediate between W and H, but a posteriori the
3 spaces coincide. One may take for instance f̃ (x) = lim sup

ε↓0
f ∗ ρε(x).

This problem has been studied, even for BV functions, by Caccioppoli,
Cesari, Vol’pert, Federer.
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Sobolev spaces in metric measure spaces (X ,d ,m)

Let us consider a complete and separable metric space (X ,d). Given
f : X → R, we define slope of f at x (also called local Lipschitz
constant) by

|∇f |(x) := lim sup
y→x

|f (y)− f (x)|
d(y , x)

.

If we have a reference measure m ∈ P(X ), we say that f ∈ Lq(X ,m)
belongs to H1,q(X ,d ,m) if there exist fh ∈ Lip(X ) such that fh → f in
Lq(X ,m) and

lim sup
h→∞

∫
X
|∇fh|q dm <∞.

In order to obtain a modulus of gradient, we call (following Cheeger)
relaxed slope any possible weak limit in Lq(X ,m) of |∇fh|.

Luigi Ambrosio (SNS) Sobolev and BV functions Roma, June 2017 7 / 34
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First differential calculus with |∇f |∗,q
Theorem. The collection of q-relaxed slopes is a convex closed set.
Its element with minimal Lq norm is denoted by |∇f |∗,q. Furthermore,
we have the improved approximation

|∇f |∗,q = lim
h→∞

|∇fh| strongly in Lq(X ,m) for some fh ∈ Lip(X ).

Starting from this, the first bits of differential calculus can be developed:
(chain rule) |∇φ(f )|∗,q ≤ |φ′(f )||∇f |∗,q, with equality if φ′ ≥ 0;
(pointwise minimality) |∇f |∗,q ≤ h m-a.e. in X for any relaxed slope h
of f .
(locality) |∇f |∗,q = |∇g|∗,q m-a.e. in {f = g}.

For instance, locality can be proved first by a reduction to the case
g = 0, and then choosing φε(t) = (t − ε)+, with ε → 0+, using the
variational characterizazion of |∇f |∗,q.
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The "Dirichlet" energy Ch

From now on we assume for simplicity q = 2 and define Ch :
L2(X ,m)→ [0,∞] by

Ch(f ) := inf
{

lim inf
h→∞

∫
X
|∇fh|2 dm : ‖fh − f‖2 → 0, fh ∈ Lip(X )

}
.

Theorem (Integral representation of Ch)

Ch(f ) <∞ if and only if f ∈ H1,2(X ,d ,m) and

Ch(f ) =

∫
|∇f |2∗ dm.

From the stability properties of relaxed slopes, or directly from the
definition, one obtains that Ch is a convex lower semicontinuous
functional in L2(X ,m) with dense domain (because it includes Lip(X )).
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The "Dirichlet" energy Ch

The analogy with the classical Dirichlet energy, though useful, can be
misleading. For instance if X = Rn with m = L n and

d(x , y) = ‖x − y‖∞ = max
1≤i≤n

|xi − yi |,

then it is easily seen that

|∇f |2∗ =
( n∑

i=1

| ∂f
∂xi

∣∣)2
.

As a consequence, Ch is 2-homogeneous but not quadratic! Metric
measure spaces such that Ch is a quadratic form are called
infinitesimally Hilbertian.
Roughly speaking, this marks the same difference between Riemannian
and Finsler manifolds.
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The Laplacian
Since Ch is convex and lower semicontinuous, we may define the
subdifferential

∂Ch(f ) :=

{
ξ ∈ L2(X ,m) : Ch(g) ≥ Ch(f ) +

∫
X
ξ(g − f ) dm ∀g

}
and, having in mind the classical case, define −∆f as the element with
minimal norm in ∂ 1

2Ch(f ).
The Hilbertian theory of gradient flows then provides a continuous
semigroup Ptg in L2(X , ) satisfying

d
dt

Ptg = ∆Ptg for L 1-a.e. t > 0.

We shall call it the L2 heat flow.
In general the laplacian is a nonlinear operator: it is linear iff the metric
measure structure is infinitesimally Hilbertian. The same holds for Pt .
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Levi’s approach in metric measure spaces
(Heinonen-Koskela) We say that a Borel function g is an upper gradient
for f : X → R if ∣∣f (γ1)− f (γ0)

∣∣ ≤ ∫
γ

g

for any absolutely continuous curve γ : [0,1]→ X . The concept makes
sense, since absolute continuity is a metric notion!
More precisely, the curvilinear integral makes sense thanks to the
formula ∫

γ
g :=

∫ 1

0
g(γs)|γ̇s|ds

and it retains its usual invariance properties. The quantity

|γ̇t | := lim
h→0

d(γt+h, γt )

|h|

is the so-called metric derivative of γ.
Can we pass from the metric derivative to the modulus of gradient?
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Levi’s approach in metric measure spaces
The reference measure m comes into play if we look for the “smallest
possible g”. Already the theory in Euclidean spaces tells us that it
would not be realistic to impose the absolute continuity property along
all curves.
Notation. We denote by et : C([0,1]; X ) → X the evaluation map at
time t ∈ [0,1], namely et (γ) := γ(t).
Definition. [AGS] π ∈ P(C([0,1]; X )) is said to be a test plan if π is
concentrated on AC([0,1]; X ) and
(1)
∫ ∫ 1

0 |γ̇t |2 dt dπ(γ) <∞;
(2) there exists C = C(π) ≥ 0 such that

(et )]π ≤ Cm for all t ∈ [0,1].

Definition. We say that a property holds for a.e. curve if the set where
the property fails is π-negligible for any test plan π.
This property can be compared with Fuglede’s potential theoretic
notion for non-parametric curves, based on 2-modulus, see A-Di
Marino-Savaré (JEMS, 2005).
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Definition. We say that a property holds for a.e. curve if the set where
the property fails is π-negligible for any test plan π.
This property can be compared with Fuglede’s potential theoretic
notion for non-parametric curves, based on 2-modulus, see A-Di
Marino-Savaré (JEMS, 2005).
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Roles of distance and measure

The condition (et )]π ≤ Cm, equivalent to

max
t∈[0,1]

∫
ψ(γt ) dπ(γ) ≤ C

∫
X
ψ dm ∀ψ ∈ Cb(X ), ψ ≥ 0

is a quantitative version of the fact that the curves, at any given time
t , do not “concentrate” too much relative to m.
Notice also that while Ch “mixes” in a nontrivial way distance and
measure, in Levi’s approach (as well as in Lott-Sturm-Villani) the
roles of d and m are better decoupled (the former is used to build the
distance W2, the latter to build the entropies).
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Levi’s approach in metric measure spaces
Definition. [AGS] (Fuglede, Koskela-MacManus). We say that g is a
weak upper gradient of f , and write g ∈WUG(f ), if∣∣f (γ1)− f (γ0)

∣∣ ≤ ∫
γ

g for a.e. curve γ.

Weak upper gradients have also a nice stability property:

fn → f m-a.e. in X , gn ∈WUG(fn), gn ⇀ g =⇒ g ∈WUG(f ).

One reduces to the case when gn → g in Lq(X ,m), and even∑
n ‖gn − g‖2 <∞. Then one uses the principle (Fuglede)∑

n

‖gn − g‖2 <∞ implies
∫
γ

gn →
∫
γ

g for a.e. curve γ.
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The gradient |∇f |w
In particular WUG(f ) is a convex closed subset of L2(X ,m). The
element with minimal L2 norm will be denoted by |∇f |w .
Another consequence of stability is the inequality

(∗) |∇f |w ≤ |∇f |∗ m-a.e. in X .

Essentially it follows by the fact that |∇f |∗, being the weak (even strong)
limit of |∇fn| with fn Lipschitz, belongs to WUG(f ).
(*) is the infinitesimal version, in this metric context, of the “easy”
inclusion H1,2 ⊂ BL1,2.
Proving the converse inequality requires the construction of Lipschitz
approximating functions fh, with

∫
|∇fh|2 dm uniformly bounded,

starting from the only informations that f is “W 1,2 along almost all
curves” and that |∇f |w ∈ L2(X ,m).
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A classical (but finite-dimensional) strategy

If we assume m to be doubling (i.e. m(B2r (x)) ≤ cDm(Br (x)) for all
balls Br (x)) and the validity of the local Poincaré inequality

(PI)
∫

Br (x)
|f − fr ,x |dm ≤ cr

∫
Bλr (x)

g dm

for g ∈ WUG(f ), then a family of approximating Lipschitz functions can
be obtained starting from the maximal function of g

Mg(x) := sup
r>0

1
m(Br (x))

∫
Br (x)

g(y) dm(y),

which belongs to L2(X ,m), and noticing that the restriction of f to the
sets {Mg ≤ λ} is Lipschitz, with Lipschitz constant Cλ.
By extending these restrictions one obtains Lipschitz approximating
functions, not only in Sobolev norm, but also in the Lusin sense.
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The identification theorem
Theorem. [AGS] Let (X ,d) be complete and separable, m Borel
nonnegative measure, finite on bounded sets, 1 < q < ∞. Then
H1,q = BL1,q and

|∇f |∗,q = |∇f |w ,q m-a.e. in X.

Tools:

• Gradient flows and sharp estimates on the dissipation of suitable
“entropies”;
• Optimal transport theory;
• Lifting of solutions to the continuity equation

d
dt
µt +∇ · (vtµt ) = 0

to probabilities π on paths (all properly understood in a metric setup).
Luigi Ambrosio (SNS) Sobolev and BV functions Roma, June 2017 18 / 34
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The new strategy

We use the gradient flow of 1
2Ch. This idea is natural, since this flow

plays the role of convolution in this “nonlinear” context.
We compute the dissipation of the entropy

t 7→
∫

gt log gt dm

along the gradient flow of 1
2Ch in two conceptually different ways.

The first formula uses just the Hilbertian formalism:

− d
dt

∫
X

gt log gt dm = −
∫

X
log gt ∆gt dm =

∫
X

|∇gt |2∗
gt

dm.

The second equality comes with an integration by parts that can be
proved with the “subdifferential” definition of laplacian, and even when
∆ is not linear. The quantity on the right hand side is the so-called
Fisher information functional.
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The new strategy

Using weak upper gradients, a sharper estimate of entropy dissipation
can be given:

− d
dt

∫
X

gt log gt dm ≤ 1
2

∫
X

|∇gt |2∗
gt

dm +
1
2

∫
X

|∇gt |2w
gt

dm.

By comparing the two we get

4
∫

X
|∇
√

gt |2∗ dm =

∫
X

|∇gt |2∗
gt

dm ≤
∫

X

|∇gt |2w
gt

dm = 4
∫

X
|∇
√

gt |2w dm.

Then, if we assume that f stays between two positive constants and we
apply the gradient flow with initial condition g := f 2, by letting t → 0 we
achieve the result.
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The sharp energy dissipation estimate

Since this estimate involves the derivative along curves, we need to
connect “Eulerian” and “Lagrangian” viewpoints. The tools are two: the
superposition principle and Kuwada’s lemma.
Recall that the Wasserstein distance W 2

2 (µ, ν) (possibly infinite)
between µ, ν ∈ P(X ) is defined by the minimum value in the optimal
transport problem

min
{∫

X×X
d2(x , y) dΣ(x , y) : (π1)]Σ = µ, (π2)]Σ = ν

}
in Kantorovich’s formulation (1941) of the problem originally raised by
Monge (1781). Here πi , i = 1,2, are the canonical projections on the
factors, hence the constraint on Σ can be written as

Σ(A× X ) = µ(A) ∀A ∈ B(X ), Σ(X × B) = ν(B) ∀B ∈ B(X ).
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transport problem

min
{∫

X×X
d2(x , y) dΣ(x , y) : (π1)]Σ = µ, (π2)]Σ = ν

}
in Kantorovich’s formulation (1941) of the problem originally raised by
Monge (1781). Here πi , i = 1,2, are the canonical projections on the
factors, hence the constraint on Σ can be written as

Σ(A× X ) = µ(A) ∀A ∈ B(X ), Σ(X × B) = ν(B) ∀B ∈ B(X ).

Luigi Ambrosio (SNS) Sobolev and BV functions Roma, June 2017 21 / 34



logoSNScol

The superposition principle
The superposition principle (L.C.Young, Smirnov, [AGS]) asserts
that any curve of measures t ∈ [0,T ] 7→ µt ∈ P(Rn) satisfying the
continuity equation

(∗) d
dt
µt + div

(
vtµt

)
= 0

with ‖vt‖L2(µt )
∈ L1 is absolutely continuous with respect to W2

and representable as superposition of curves, i.e., for some
π ∈P(C([0,T ];Rn)) it holds (et )]π = µt for all t ∈ [0,T ]. Moreover

(∗∗) |µ̇t |2 ≤
∫
Rn
|vt |2 dµt for a.e. t

and there exists an “optimal” vt satisfying (*) for which (**) holds with
equality.
This principle has been widely used in [AGS] to formalize Otto’s
calculus and the Riemannian structure of P2(Rn). The metric
version is due to Lisini.
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The superposition principle

Theorem. (Lisini) Let t ∈ [0,T ] 7→ µt ∈P(X ) be an AC2 curve. Then
there exists π ∈P(C([0,T ]; X )), concentrated on AC2([0,T ]; X ), such
that (et )]π = µt for all t ∈ [0,T ] and

|µ̇t |2 =

∫
|γ̇t |2 dπ(γ) for a.e. t ∈ [0,T ].

We are going to apply this principle to the curve µt = gtm, with gt
gradient flow of 1

2Ch starting from g0 ∈ L∞(X ,m) nonnegative e
normalized (

∫
g0 dm = 1).

Whenever m(Br (x̄)) ≤ Cecr2
, these properties are preserved in time,

hence µt ∈ P(X ) and the probability π given by Lisini’s theorem is
a test plan (i.e. it satisfies the non-concentration condition), having
marginals with bounded density.
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Kuwada’s lemma
Lemma. Let g0 ∈ L2(X ,m) and let (gt ) be the gradient flow of
1
2Ch starting from g0. Assume that

∫
X g0 dm = 1. The the curve

t 7→ µt := gtm ∈P(X ) is absolutely continuous with respect to W2 and
it holds

|µ̇t |2 ≤
∫

X

|∇gt |2∗
gt

dm for a.e. t ∈ (0,∞).

The proof exploits the deep link between optimal transport and the
Hopf-Lax semigroup

Qtϕ(x) := inf
y∈X

ϕ(y) +
d2(x , y)

2t
.

In particular we use the (metric) subsolution property: for any x ∈ X ,
with at most countably many exceptional times, it holds:

d
dt

Qt f (x) +
1
2
|∇Qt f |2(x) ≤ 0.
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Proof of Kuwada’s lemma
We use the duality formula and interpolation to write (s < t):

1
2

W 2
2 (µs, µt ) = sup

φ
−
∫

X
φdµs +

∫
X

Q1φdµt

= sup
φ

∫ 1

0

d
d`

∫
X

Q`φdµs+`(t−s) d`.

By the Leibniz rule and the subsolution property, the supremum can be
estimated from above with∫ 1

0

∫
X
−1

2
|∇Q`φ|2gs+`(t−s) dmd`+ (t − s)

∫ 1

0

∫
X

Q`φ∆gs+`(t−s) dmd`.

Eventually Young inequality and integration by parts give the estimate

1
2

(t − s)2
∫ 1

0

∫ |∇gs+`(t−s)|2

gs+`(t−s)
dm d`

and the result as t → s.
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Proof of the sharp energy dissipation estimate

Let π ∈P(C([0,1]; X )) be a test plan associated to µt = gtm, given by
the metric superposition principle. Using the convexity of z log z and
the chain rule |∇ log(gt )|w = |∇gt |w/gt we get∫

gt log gt dm −
∫

gs log gs dm ≤
∫

log gt (gt − gs) dm

=

∫
log gt (γt )− log gt (γs) dπ(γ)

≤
∫∫ s

t

|∇gt |w (γr )

gt (γr )
|γ̇r |dr dπ(γ)

≤ 1
2

∫ s

t

∫
X

|∇gt |2w
g2

t
gr dr dm +

1
2

∫ s

t

∫
|γ̇r |2 dr dπ

=
1
2

∫ s

t

∫
X

|∇gt |2w
g2

t
gr dr dm +

1
2

∫ s

t
|µ̇r |2 dr .
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Eventually we use Kuwada’s lemma to get∫
gt log gt dm −

∫
gs log gs dm ≤

1
2

∫ s

t

∫
X

|∇gt |2w
g2

t
gr dr dm +

1
2

∫ s

t

∫
X

|∇gr |2∗
gr

dr dm.

As s → t we get gr/g2
t ∼ 1/gt and we obtain the needed sharp energy

dissipation formula.
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Sobolev spaces via integration by parts

Can we recover the "integration by parts" point of view also on metric
measure spaces?
Definition. (Weaver) A derivation is a linear functional b : Lipb(X ) →
L0(X ,m) satisfying the Leibniz rule.
Divergence.

∫
X b(f ) dm = −

∫
X f div b dm.

Norm |b| of a derivation. The least g satisfying |b(f )| ≤ g|∇f | m-a.e.
in X for all f ∈ Lipb(X ).
Derivations play the role of vector fields in this theory (see Gigli’s
second Memoirs for much more).
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Sobolev spaces via integration by parts

Definition. Let 1 < q < ∞, p = q′. We say that f ∈ Lp(X ,m) belongs
to W 1,p(X ,m) if there exists a linear functional Lf on Lq derivations with
divergence in Lq such that∫

X
Lf (b) dm = −

∫
X

f div b dm ∀b with |b|+ |div b| ∈ Lq(X ,m).

It can be proved (Di Marino) that

H1,p(X ,d ,m) ⊂W 1,p(X ,d ,m) ⊂ BL1,p(X ,d ,m).

As a consequence, the identification theorem tells us that the 3 spaces
coincide, with essentially no assumption on the metric measure
structure!
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The spaces BL1,1 and H1,1

The proof of the identification theorem fails in the case q = 1, by the
lack of semicontinuity of f 7→

∫
X |∇f |dm, even in nice spaces.

3 possible definitions:
• One could define BL1,1(X ,d,m) via weak upper gradients (using
1-test plans)
• One could define H1,1(X ,d,m) considering approximating sequences
(fn) for which |∇fn| are m-equiintegrable;
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The space BV
In the Euclidean space Rn (or other nice spaces), BV functions f are
defined by the existence of a vector-valued measure with finite total
variation

Df =
(
D1f , . . . ,Dnf

)
,

representing the derivative in the sense of distributions. In recent years,
BV functions in infinite-dimensional spaces have been investigated,
starting from the work of Fukushima in Gaussian (Wiener) spaces.

Definition. (Miranda Jr, 1996) Let f ∈ L1(X ,d,m). We say that
f ∈ BV (X ,d,m) if

|Df |(X ) := inf
{

lim inf
n→∞

∫
X
|∇fn|dm : fn → f in L1(X ), fn ∈ Liploc(X )

}
<∞.

Miranda proved that, for f ∈ L1
loc(X ), in locally compact spaces the set

function A 7→ |Df |(A) is always the restriction to open sets of X of a
Borel (possibly infinite) measure, the so-called total variation measure.
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The space BV

Is there an equivalent definition of BV and of |Df | based on (measure)
weak upper gradients?

Does it work also in non locally compact situations?

Having in mind the BV 1-dimensional estimate (for nice functions f )

|f ◦ γ(1)− f ◦ γ(0)| ≤ |D(f ◦ γ)|(0,1) =

∫ 1

0
|∇f |(γt )|γ′t |dt

≤ Lip(γ)

∫ 1

0
|∇f |(γt )|dt

we may average the inequality w.r.t. γ and give the following “weak
upper gradient” definition of the space BV .
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The space BV

Definition. Let f ∈ L1(X ,m), we say that f ∈ BVw (X ,d,m) if there
exists a positive finite measure µ in X satisfying∫

γ]|D(f ◦ γ)|dπ(γ) ≤ C(π)‖Lip(γ)‖L∞(π)µ

for all∞-test plans π. The minimal measure µ with this property will be
denoted by |Df |w .
Theorem. (A-Di Marino, 2012) BVw (X ,d,m) = BV (X ,d,m) and
|Df |w = |Df |.
The proof involves the gradient flow of f 7→ |Df |(X ) and suitable
limiting versions as p → ∞ of the tools (Hamilton-Jacobi equations,
superposition principle) that we have seen in the Sobolev case.
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